If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8j^2+6=0
a = -8; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-8)·6
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-8}=\frac{0-8\sqrt{3}}{-16} =-\frac{8\sqrt{3}}{-16} =-\frac{\sqrt{3}}{-2} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-8}=\frac{0+8\sqrt{3}}{-16} =\frac{8\sqrt{3}}{-16} =\frac{\sqrt{3}}{-2} $
| 8t^2+8t+2=0 | | 5-4x-2+6x=4x+10-7x+18 | | (9x+16)+(6x+15)=(19x+3) | | -4m^2+4m-1=0 | | 189=6x÷3(-7x-18) | | 8d^2-2=0 | | -u^2+8u+2=0 | | 17m=68m= | | 3x-1-5x+6=4-3x-11+4x | | -5h^2+6=0 | | 4q^2-9q+1=0 | | -5p^2+6p=0 | | 2(x+10)+(x-6)-3=13.6 | | -3j^2-9j-5=0 | | -7+10x-3=9+6x+5 | | 2(x-3)+7=0 | | 3z^2-9z-4=0 | | 4g^2+9g+2=0 | | (x+3)*2=38 | | -8n^2-9n-2=0 | | 3u^2+6u+3=0 | | 3x-4+2x=16+2x-5 | | 4x-1/2=x | | 9(c−86)=72 | | 2=22-2m | | 7q^2-5q-6=0 | | 7x-5+x=20 | | 3x+47+37=5×+62 | | 5+7x-4x=-9-3x-4 | | d+(-5.004=2.826 | | 5x-15=6x+3-7x | | 7*x^2+16*x-31=0 |